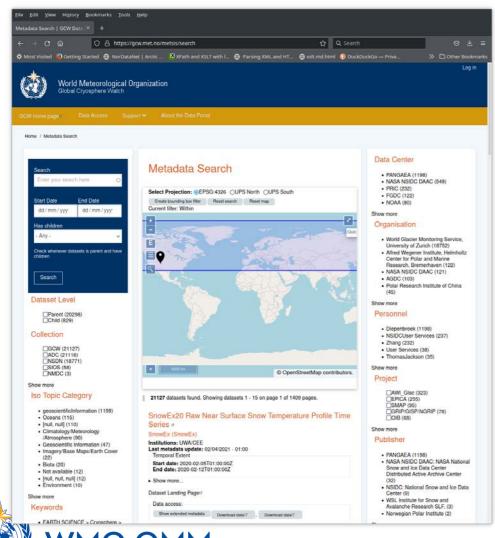
Open Access to GCW data

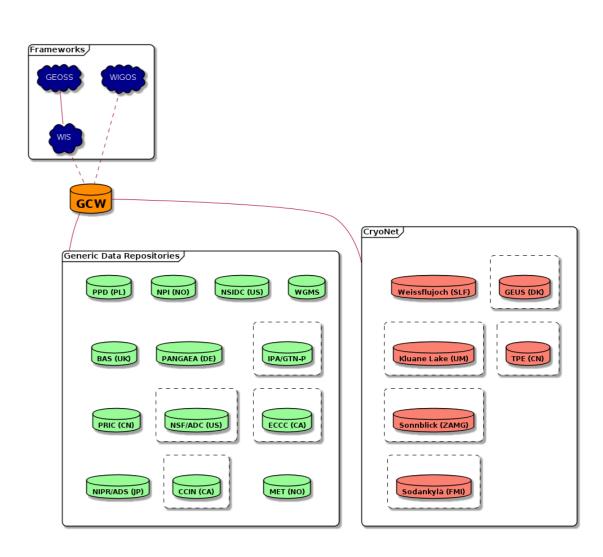

Øystein Godøy (Norwegian Meteorological Institute)
Mathias Bavay (WSL/SLF)

...

WMO OMM

World Meteorological Organization
Organisation météorologique mondiale

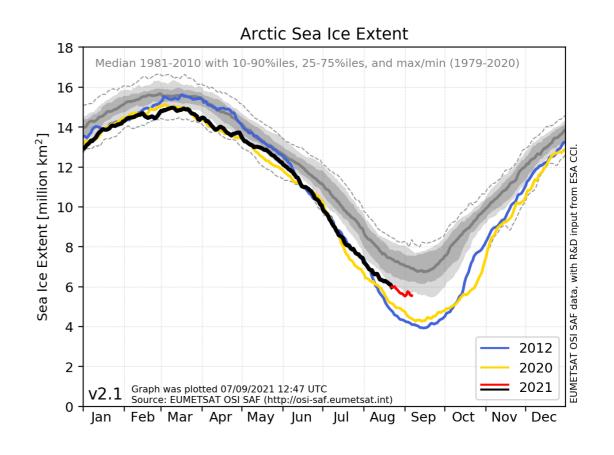
Purpose of GCW Data Management



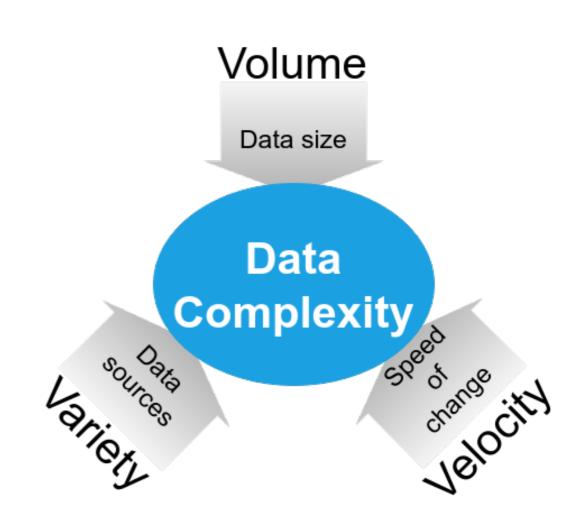
- To provide an overview of the datasets that are relevant for GCW
- To provide access to datasets
 - Real time data streams
 - Access to archived data
- Distributed Data Management
 - Metadata driven

Heterogeneous community

- Types of data centres
 - National Meteorological and Hydrological Services
 - Universities
 - Independent research institutions
- Varying degree of structured data management
- Not necessarily sharing the same objective



Heterogeneous data


- Types of data
 - In situ observations
 - Weather data
 - Mass balance data
 - Surface irradiance data
 - ...
 - Remote sensing products
 - Numerical simulations

Heterogeneous data

- Types of data
 - In situ observations
 - Weather data
 - Mass balance data
 - Surface irradiance data
 - ...
 - Remote sensing products
 - Numerical simulations
- Generic types of data
 ₩₩Q:QMM

Project objectives

- To facilitate the access to available datasets from different institutions and projects, by bridging between scientific communities and WMO systems in support of the WMO activities (e.g. WMO operating plan).
- Improving interoperability of WMO GCW relevant datasets.
- Increasing the amount of data available to support cryosphere related goals of WMO, as delivered by GCW.
- Wherever possible efficiently link between WIGOS and WIS Metadata.

Project team

- Norway MET
 - Øystein Godøy, Lara Ferrighi, Magnar Martinsen, Massimo Di Stefano, Elodie Fernandez
- Switzerland WSL/SLF
 - Mathias Bavay, Charles Fierz, Joel Fiddes

Project plan - Deliverables

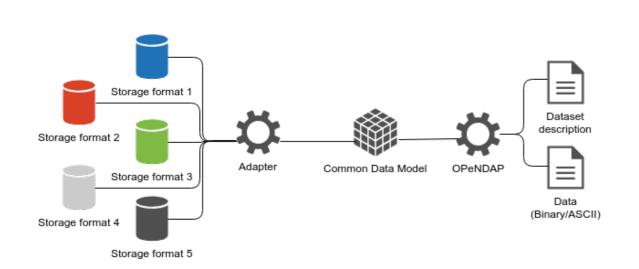
No.	Deliverable name	Lead	Del. date	Status
D1	Updated information model enabling linkages on dataset to WIGOS metadata	MET	2020Q2	Complete
D2	Dynamic visualisation of time series from NetCDF-CF and OPeNDAP	MET	2020Q2	Complete
D3	Updated harvesting of discovery metadata supporting OAI-PMH, OGC CSW and OpenSearch	MET	2021Q2	In progress
D4	NetCDF-CF guidelines for timeseries and profiles (e.g. permafrost)	MET	2021Q3	In progress
D5	Mapping harvested discovery metadata to WMO Core Profile	MET	2021Q3	In progress
D6	Extension of metadata harvesting to support schema.org provided current ESIP activities are approved by schema.org	MET	2022Q3	Pending funding
D7	Conversion of NetCDF-CF to WMO BUFR for permafrost profiles	MET	2023Q2	Funding through EU
D8	Web service converting non standardised data to NetCDF-CF using MeteolO	WSL/SLF	2023Q4	Funding through EU

Project plan - Milestones

No.	Milestone name	Lead	Due	Status
M1	New information model implemented	MET	2021Q1	Done
M2	Selected permafrost datasets available online and in real time	MET	2021Q4	In progress
M3	Harvested discovery metadata exposed through WIS	MET	2022Q1	In progress
M4	Transformation of NetCDF-CF to WMO BUFR for selected datasets	MET	2023	In planning

All applied principles – Highlights in green

- Principle 1
- Principle 2
- Principle 3
- Principle 4
- Principle 5
- Principle 6


- Principle 7
- Principle 8
- Principle 9
- Principle 10
- Principle 11

- Principle 1: WIS 2.0: adopts Web technologies and leverages industry best practices and open standards.
 - GCW data management is based on harvesting discovery metadata through standardised web services for such exchange.
 - The information exchanged is standardised according to ISO19115 or GCMD DIF (currently)
 and data are encouraged to be served as NetCDF according to the Climate and Forecast
 convention. This links directly to a Service Oriented Approach relying on Semantic Web and
 Linked Data.
 - Specific standards used include OAI-PMH, OGC CSW, OpenSearch, OGC WMS, OPeNDAP, OGC WPS, SKOS/OWL, ISO19115, (SPARQL)

Principle 5: WIS 2.0: encourages NCs and DCPCs to provide 'data reduction' services via WIS that process 'big data' to create results or products that are small enough to be conveniently downloaded and used by those with minimal technical infrastructure.

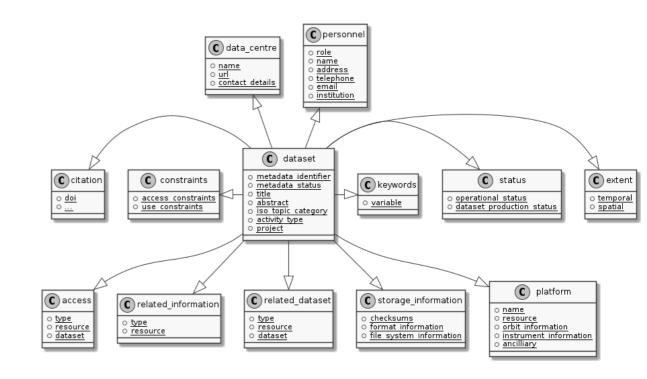
- Principle 8: WIS 2.0: will adopt direct data-exchange between provider and consumer.
 - GCW is currently considering the data provider and the host data centre of the data as the authoritative source for data. The direct access to a dataset is done by forwarding the data consumer to the web services offered by the host data centre.
 - The only exception to this in the current implementation is when higher order services offered in the GCW Data Portal are used to modify or combine data prior to data delivery.

- Principle 10: WIS 2.0: will provide a catalogue containing metadata that describes both data and the service(s) provided to access that data.
 - GCW maintains its own catalogue with discovery metadata, but holds currently no catalogue for web services.
 - Web services are identified through the dataset metadata relying on the principle of data being the important piece of information, services are mechanisms conveying the information.
 - Cataloguing the data discovery web services will be done, but
 WMOtOMEM ned in the short term.

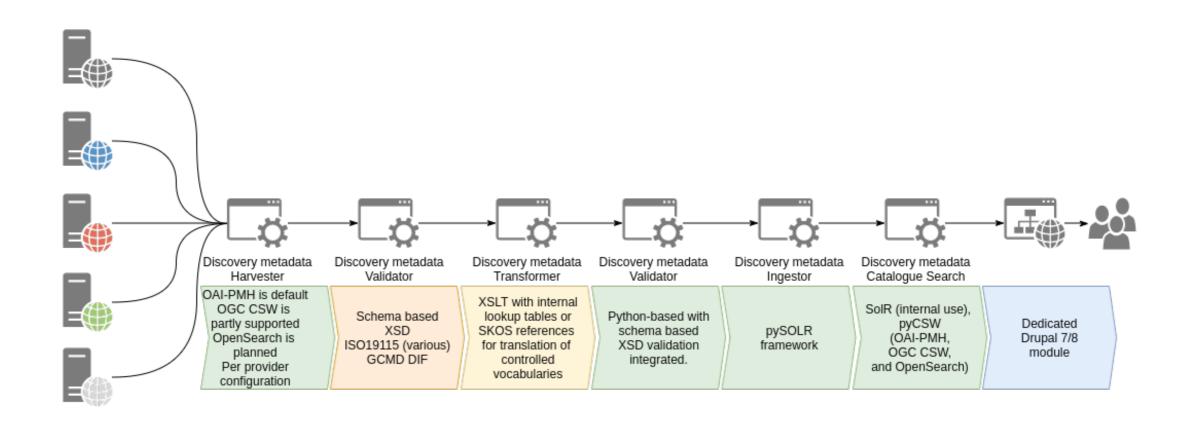
- Principle 11: WIS 2.0: encourages data providers to publish metadata describing their data and Web services in a way that can be indexed by commercial search engines.
 - GCW is reimplementing web services offering discovery metadata and will in this context support OAI-PMH, OGC CSW and OpenSearch.
 - Details are still under discussion as well as how to ensure integrity in the value chain between the originating data centre and the higher order catalogues like WIS (to avoid duplicated of wirecords).

GCW is also working with the ESIP community on extensions

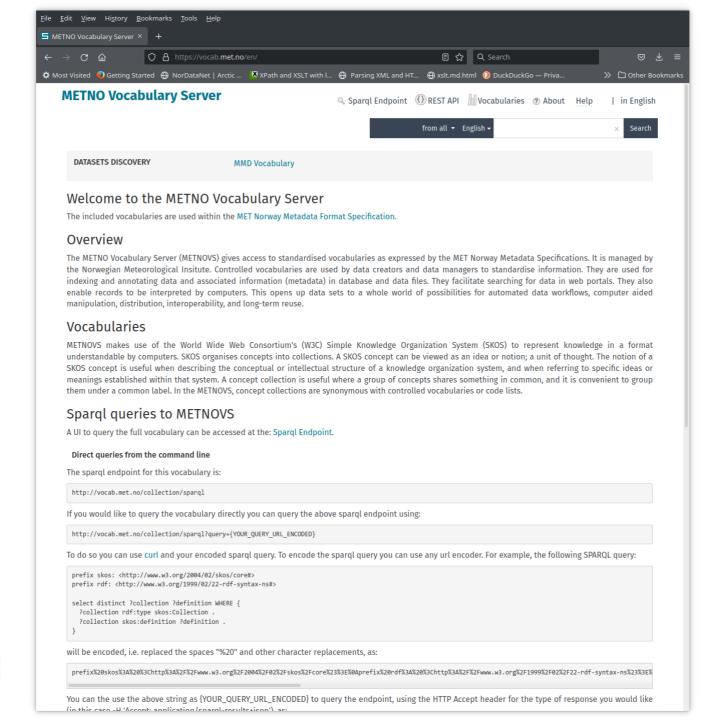
- Further applied principles
 - Principle 2: Uniform Resource Locators (URL)
 - Discovery metadata are harvested from contributing data centres using URLs.
 The discovery metadata harvested contains URLs for data access, licence
 information as well as interpretation of semantic annotation (on scientific
 parameters or purpose of a URL).
 - Principle 3: Public telecommunications networks
 - The backbone for all communication within GCW data management is the Internet. For specific purposes GCW will connect with private networks (e.g. WMO GTS).
 - Principle 4: Web service(s)
 - WMO 6000 data management relies on web services for information and data exchange and for high order services. This information follows the


- Further applied principles
 - Principle 6: Open standard messaging protocols
 - GCW does not currently have messaging protocol. Linkages towards EUMETCast/GEONETCast have been explored, implementation relies on user communities and demand.
 - Principle 7: Cache/store messages
 - GCW is currently not caching data nor distributing messages. Real time data are available as data streams using OPeNDAP. Specific message distribution will rely on the WMO message passing system.
 - Principle 9: Routing tables and bulletin headers
- WMO GCM core functionality relies on web services. GCW is currently not using WMO GTS for data transmission. The critical part is to connect

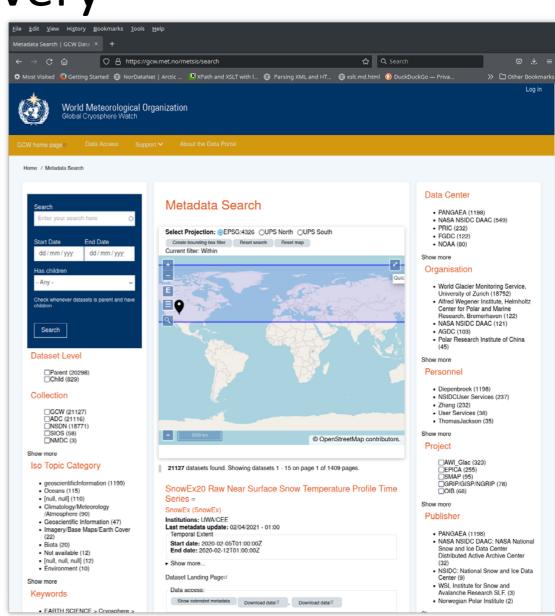
Project data standards

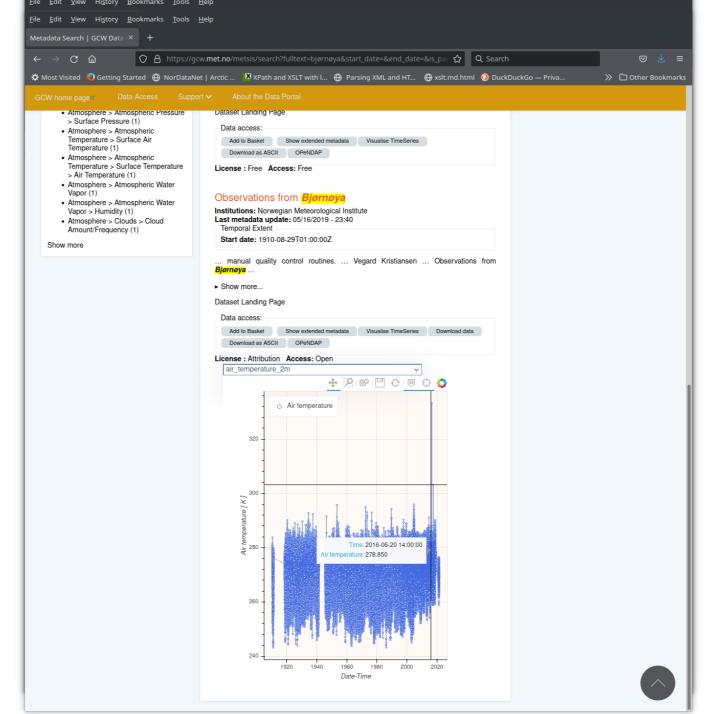

- Data formats
 - CF-NetCDF with ACDD elements
 - For timeseries, profiles, trajectories
 - Under consideration for geometries
 - Relying on HDF5 as the storage layer
 - Has started to explore Zarr but not highest priority
 - WMO GRIB
 - WMO BUFR
- Application of the Attribute Convention for Dataset Discovery
 (ACBD) Within NetCDF allows generation of discovery metadata for remote datasets if served through OPeNDAP and with

Project discovery metadata standards


- Exchange protocols
 - OAI-PMH, OGC CSW, (OpenSearch)
- Information containers
 - ISO19115/ISO19139 (various profiles), GCMD DIF (multiple versions), ACDD, MMD
 - Looking into schema.org and DCAT
- Terminologies/ontologies
 - GCMD, OSGeo, (WIGOS)
 - WMO OMM Using MMD as the metadata

Discovery metadata workflow

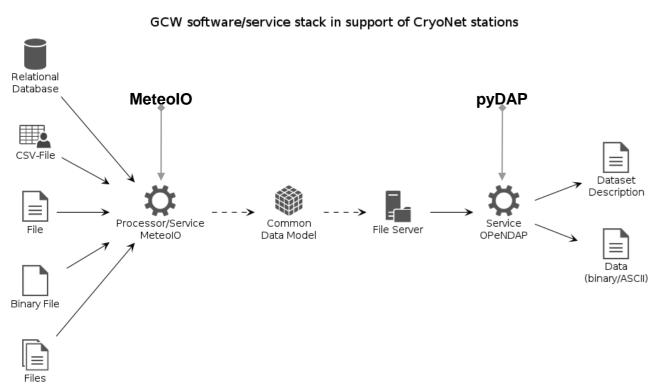




Data discovery

- The GCW data portal is available at https://gcw.met.no
- It serves a human interface and machine interfaces
- The human interface relies on SolR and extensive use of faceting
 - Machine interfaces are implemented using pvCSW

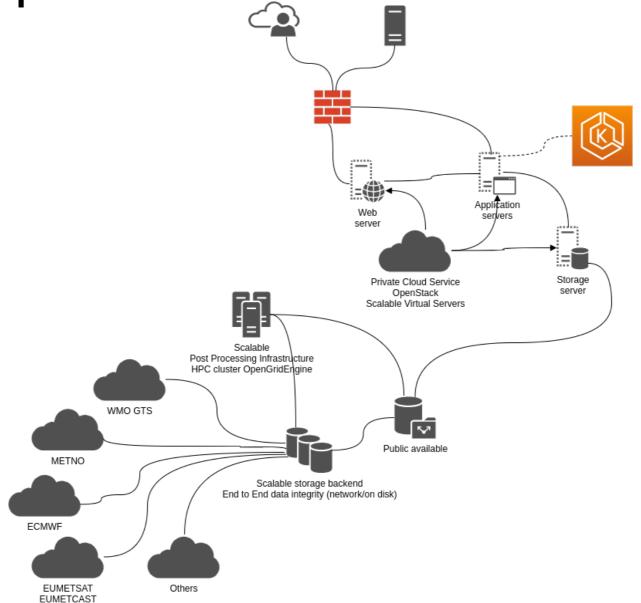
Data exchange


- GCW is setting up services for data providers not able to serve their own data
 - Only serving in situ measurements for the time being relying on WSL/SLF or MET to serve the data according to GCW requirements
 - GCW recommends to serve data using OPeNDAP and WMS using THREDDS, Hyrax or pyDAP as servers and develops software components to help the community
- GCW will act as a mediator between non NMHS providers and the WMO systems
 WMO OMM
 - Entering and extracting information to serve the full community

Contributions to Open Source development

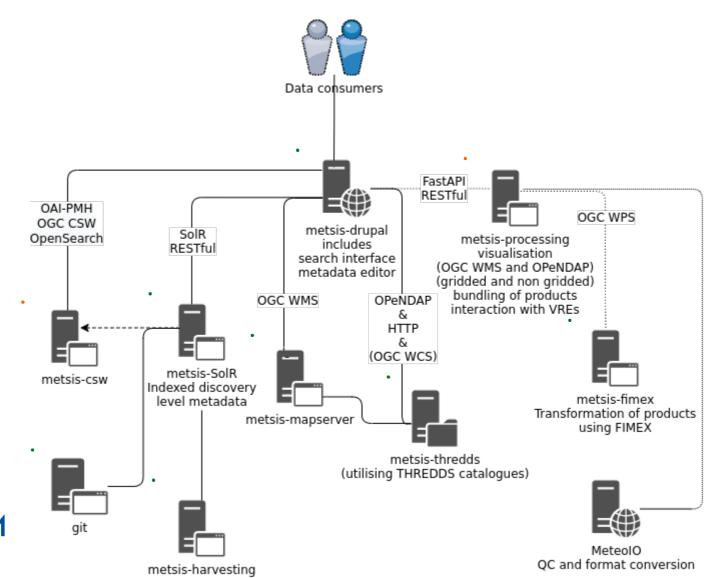
- Everything developed is released using open software licenses
- Core functionality is included using open source projects like pyCSW
 - Contributions focus on information handling
 - API's work well
- Specific focus is put on MeteolO and making services for the community (web services, docker containers for easy implementation etc)
 - Through EU-funding in Arctic Passion

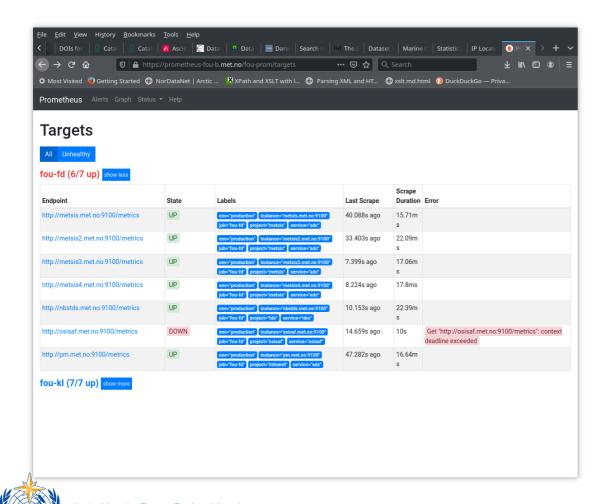
MeteolO

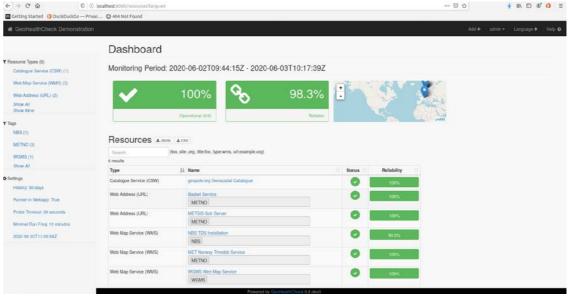


- WSL/SLF Software stack in support for GCW
 - Software for discovery and data interoperability
 - Solution capable of integration a wide range of input streams, including RDBMS
 - Includes QC and transformation from many formats to NetCDF/CF

Talaa aana af data fuara


Implementation environment




Architecture overview

Monitoring

Building the system

- Relies on external funding received through a number of projects, both national and European
- Project funding that has supported the development includes (non exhaustive list)
 - Arctic Passion (H2020)
 - SIOS KC (RCN)
 - Norwegian Scientific Data Network (RCN)
 - Norwegian Ground Segment for Satellite Data (NOSA)
- ESA Cryosphere Virtual Laboratory (ESA)
 - ENVRI-FAIR (H2020)

Input to WIS2

- WMO formats has little traction outside the NMHS, need to be pragmatic and support other standards (each for its specific purpose)
- Improve the usage of CF-NetCDF and ACDD and actively engage in developments
 - It simplifies interaction with external communities
- Evaluate Zarr as backend for CF-NetCDF
- Include OPeNDAP as a mechanism for data exchange
- www. Used internally in Copernicus services, ESGF etc
- Connect with external communities on data management

Thank you Merci

WMO OMM
World Meteorological Organization
Organisation météorologique mondiale