
GISC Tokyo cloud project
(draft)

KANNO Yoshiaki/ OZEKI Ren
Japan Meteorological Agency (JMA)

Project objectives
• Enable smooth migration from GTS to cloud based “shard platform” data exchange

system
• Get necessary skills and knowledge for the new technology (especially for MQPs)

together with AOR countries
• Demonstrate the prototype of MQPs system to AOR countries (A)
• Demonstrate the more conventional cloud storage direct download method for

countries preferring a more gradual evolution (B)
• Consider ways of immediately exchanging time critical data such as warnings and

advisories
• Consider interoperability, efficiency, sustainability, and techniques toward efficient

migration for LDCs and other parties

Project team

 KANNO Yoshiaki: project management
 OZEKI Ren: in charge of A: MQPs system
 NOYORI Tatsuya: in charge of B: Cloud storage direct
downloading

And other GISC Tokyo members (total 7 people)

Project plan
A: MQPs system
・Develop prototype of
communication infrastructure

B: Cloud storage direct download
・Develop open source tools to

utilize cloud storage

User (subscribe)User (publish)

Storage

Broker
Storage

User (subscribe)User (publish)

(currently using on-premise machine) (currently using cloud on trial base)

Project Overview - A: MQPs-1

GISC Tokyo
server

Internet
GTS

Pilot Project
Server (MQTT)

Send TAC and
BUFR bulletins

Project User

Project User

Subscribe JSON
messages by MQTT

Get data
by HTTPs

• Developed initial MQP system in 2019

Project Overview - A: MQPs-2

• Performance test of pub/sub architecture and implement
related improvement
– In 2020, testing of transmission for 3,000 files simultaneously (as per

NWP model outputs) using MQTT revealed significant delays
– “prefetch” (using AMQP) showed potential for significant delay

reduction (details in later slide)
• Consider appropriate topic tree structure, in line with relevant

WMO community

Project overview - B: Cloud storage download- 1

• Develop tools to utilize cloud storage
– Enable user-scheduled downloading, in line with data categories
– Make the tools open, as open-source

• Ensure interoperability among various cloud storage providers
– Post data to cloud storage with REST (HTTPS)
– Get data from cloud storage with REST (HTTPS)
– Enable mirroring among cloud storages with REST (HTTPS)

Project Overview- B: Cloud storage - 2

(HTTPS GET)
(HTTPS POST)

Mirror (HTTPS GET)

Demonstration
Project system

Cloud-C
(China)

Cloud-A
(USA: global)

Cloud-F
(Japan)

Interoperability
check

Cloud-B
(USA: global)

Cloud-D
(US/EU/JP)

Cloud-E
(USA: global)

Shared platform

Mirroring may be introduced in relation to
federated solutions for shared platform

Why mirroring? - B: Cloud storage

Region A

Region B

Region CMirroring (selective
synchronization)

WIS 2 Principles in the project
Principle 1: WIS 2.0 adopts Web technologies and leverages industry best practices and open

standards
The project uses on

• MQPs: MQTT/AMQP and HTTPS
• Cloud storage: HTTPS and REST

Principle 2: WIS 2.0 uses Uniform Resource Locators (URL) to identify resources
The project uses URLs both on MQPs and Cloud storage

Principle 3: WIS 2.0 prioritizes use of public telecommunications networks (i.e., Internet) when
publishing digital resources

The project uses Internet both on MQPs and Cloud storage

WIS 2 Principles in the project
Principle 6: WIS 2.0 will add open standard messaging protocols that use the publish-subscribe

message pattern to the list of data exchange mechanisms approved for use within WIS and
GTS
• MQPs: use MQTT/AMQP to exchange JSON message
• Cloud storage: doesn’t use messaging. Everything are implemented with cloud storage

over HTTPS.
Principle 7: WIS 2.0 will require all services that provide real-time distribution of messages to

cache/store the messages for a minimum of 24-hours, and allow users to request cached
messages for download
• MQPs: Real-time assured messages distribution and 24-hours data holding
• Cloud storage: Real-time data distribution and 24-hours data caching

WIS 2 Principles in the project
Principle 8: WIS 2.0 will adopt direct data exchange between provider and consumer

Project enables direct data exchange both on MQPs and cloud storage

Principle 9: WIS 2.0 will phase out the use of routing tables and bulletin headers
Project doesn’t use routing tables both on MQPs and cloud storage

All direct project principals are outlined above, but harmony with other efforts will also
be maintained.

Project data/metadata standards
Data standards:
• This project focuses on GTS-going data. Started with BUFR & TAC. GRIB

is to be included.

Protocol standards and related standards:
• Project uses MQTT(v3.1), AMQP(0-9-1) , HTTPS, JSON, and REST.

Metadata standards:
• Project doesn’t directly focus on metadata at this stage. Future subject.

Data exchange

• Project focuses on MQPs and direct cloud download for data exchange mechanism

• Project involves initial experimental data exchange between GISC Tokyo and GISC
Offenbach.

• GISC Tokyo plans to invite other countries to join the experimental data exchange.
• Invite GISC Tokyo AoR countries and collaborating GISCs, via the online GISC

Tokyo WIS workshop, to be held in late 2021.
• Collect feedback for further improvement, and monitor system load changes.

Input to WIS2
• The key MQP technology expected to replace GTS has been used by few

NMHSs to date. Some countries (esp. LDCs) may struggle with related
incorporation into operational systems.

• This project found some different nature between MQPs and direct cloud-
storage downloading. (details later)

• MQPs system is very real-time in nature while direct downloading is
simple. Hurdles to migrate maybe low.

• Big data (e.g. NWP, satellite) is likely to be suitable for simple
downloading, as it is produced on schedule.

• As an alternative or transitional method, combined approaches may be an
option for efficient migration from GTS to WIS2.

• The next slide illustrates such a combined approach.

Potential combined approach as an alternative or
transitional method

Storage

Data Category
• Cat-1: Time Critical data

(Warning, Advisory, …)
– Non-scheduled data,

within 2-minute
• Cat-2: Conventional data

(SYNOP, TEMP, …)
– within 15-minute

• Cat-3: BIG size data (NWP,
Satellite, …)
– Scheduled data

Shared
platform

All Users
(when publish)

A: MQP system
B: Direct downloading

(polling)

Some Users (subscribe)
• have difficulty on MQP
• MQP users but use this way
on getting scheduled BIG data
• 24h cashe

Produce
and send
m

essage pu
t d

at
a

polling

dow
nload

data

Users (subscribe)
with MQP

(Broker) dow
nload

data

Speaker change to Ren

- Experiment with MQPs
- Compare MQPs system with simple cloud downloading

Experiment with MQPs

Pub/sub architecture
1. JMA Publish JSON
2. Others subscribe JSON
3. Others get data

What subscriber is doing to get data
{
"pubTime": "yyyymmddhhmmss",
"baseURL": "https://example.com/",
"relPath": "dir1/dir2/example.dat",
"size": "xxxxxxxxxx",
"integrity": {
"method": "SHA512",
"value": "zzzzzzzzzzzzzzzzzzzzz(base64)"

},
"content": "",
"signature": "Japan Meteorological Agency"

}

Message_template.json

Subscriber get JSON
messages

Extract URL from JSON

GET request (to URL)

How to get messages you want

If you need JMA and Synoptic data
Subscribe following Topic("+" means all) :

WIS/+/+/RJTD/+/Synoptic/+

WIS/<Time>/<Country Code>/<CCCC>/<Fileformat>/<Cat1>/<Cat 2>

Topic Structure

Conditions of the experiment
- All components are built on docker
- High RTT was reproduced by "tc"
- prefetch = 1
- Consider the last ACK as the maximum

delay
- use 3000 bufr file in GISC-cache
- http requests are not parallelized

broker: rabbitMQ
sub: pika (base image python3:8)
web: httpd official image

Latency (problem)
- 1 Message needs 1.5sec
- 3,000 simultaneous data => latency is about 4500s !

I did two things to reduce delay:
1. Asynchronization of http request
2. Use prefetch

Asynchronization of http request

- Bottleneck is HTTP GET
- Asynchronization of http request
- We can receive more messages within a unit time

What is Prefetch ?

Use Prefetch Normal

Using Prefetch,
send a "prefetch" number of
messages

Reduce latency in high RTT !

Result (How much delay has been reduced?)
I did two things:
1. Asynchronization of http request
2. Use prefetch

condition:
prefetch = 6, RTT = 300ms,
number of messages = 3000

result:
latency is about 180s(max)

condition:
prefetch = 1, RTT = 300ms,
number of messages = 3000

result:
latency is about 4500s (max)

Before After

Compare MQPs system with simple cloud
downloading

Today we introduce two projects to you.
Here is a comparison of the research that has begun on both of them at this time.

Feature of each architecture(A and B)

MQPs (A) simple cloud (B)

data description topic tree data path

how to get data
(performance) individually, ASAP in batches at certain interval

Data description: ("topic" vs "path")

"topic" is more flexible about Data description :
- "topic" is free (unrelated to data location)
- "path" is tree structure (data location itself)

https://example.com/RJTD/bufr/surface/synop/...

Generic Specify

Data location

Performance: "individual (A)" vs "batch (B)"
Depends on data flow:

situation MQPs (A) simple cloud (B)

small number of files very fast
(delay > 1sec)

fast
(delay > 10sec)

large number of files need optimization
(large overhead)

efficient
(small overhead)

A is always connected, so it is very fast if there is no overhead
B is affected by the polling interval

Why "batch" is efficient, when the number of files is large?

- "batch" can optimize access
- How to optimize access ?

- Lots of small files => batch
- large file => separated, parallel

As the number of files increases,
the effect of optimization
becomes more significant!

individual batch

Survey on anticipated issues

task and issue MQPs (A) simple cloud (B)

Latency when number of files bursts done done

Implementation mirroring
without routing

Not yet
(use bridge ?) done

operation of different tools Not yet done

Get the simple cloud downloader and try:
https://github.com/public-tatsuya-
noyori/meteorological_preprocessor/blob/master/src/meteorol
ogical_preprocessor/catalog.md

https://public-tatsuya-noyori.github.io/tokyo_cloud_project/cloud_project

Thank you
Merci

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Experiment with MQPs
	Pub/sub architecture
	What subscriber is doing to get data
	How to get messages you want
	Conditions of the experiment
	Latency (problem)
	Asynchronization of http request
	What is Prefetch ?
	Result (How much delay has been reduced?)
	Compare MQPs system with simple cloud downloading
	Feature of each architecture(A and B)
	Data description: ("topic" vs "path")
	Performance: "individual (A)" vs "batch (B)"
	Why "batch" is efficient, when the number of files is large?
	Survey on anticipated issues
	Slide Number 33

