WMO WIS 2.0 Discovery Metadata exchange, harvesting and search pilot project

Tom Kralidis Meteorological Service of Canada

WMO OMM

World Meteorological Organization
Organisation météorologique mondiale

Project objectives

 This project aims to experiment implementing WMO discovery metadata as <u>DCAT</u> using the <u>OGC API - Records</u> draft standard. This project will also experiment actionable linkages with demonstration project 1 (AMQP/MQTT), search/access of collections of variables of NWP data, as well as enabling search capability against WIS 2.0 topics

Project team

Name	Why / Role	Country
Task Team on WIS Metadata (TT-WISMD)		
Mr Tom KRALIDIS	Chair	Canada
Mr Guillaume AUBERT	Member (RA VI)	EUMETSAT
Mr Xinqiang HAN	Member (RA II)	China
Ms Hanane KAMIL	Member (RA I)	Morocco
Mr Jan OSUSKY	Member (RA VI)	HMEI
Ms Julia SIELAND	Member (RA VI)	Germany
Mr Ioannis MALLAS	Member (RA VI)	ECMWF
Mr Steve OLSON	Member (RA IV)	USA
WMO Secretariat		
Ms Anna MILAN		
Mr Enrico FUCILE		

Name	Role	Country
Jeremy Tandy	Chair ET-W2AT	UK
	OGC (external	
Chris Holmes	consultation)	USA
	Consortium for Ocean	
	Leadership (external	
Douglas Fils	consultation)	USA
	Meteorological data	
OGC MetOcean	discovery APIs	
Domain Working	(discussion, standards	
Group	alignment)	

Project plan

- Collaboration
 - SC-IMT
 - ET-Metadata/TT-WISMD
 - OGC MetOcean DomainWorking Group
 - Ocean Info Hub
 - Open Geospatial Consortium / STAC

Milestone	Delivery Date
metadata design (types, crosswalk)	2021-03-31
demonstration (harvesting, search)	2021-09-30
final report	2021-10-31

STANDARDS AND WEB SERVICES LANDSCAPE / ECOSYSTEM EVOLUTION

First Generation Web Services and Standards

- XML-RPC/CORBA
- SOAP/WSDL/UDDI
- Service Oriented Architecture (SOA)
- Strong concept of RDBMS backend
- OGC first generation services (WMS, WFS, WCS, WPS, CSW, etc.)
- XML Payloads

First Generation Web Services Realities

- XML Payloads
 - Heavy for web/mobile applications
- Overloading of native HTTP functionality / tunneling
 - GET /api?request=GetRecordById&id=5
 - GET /api?action=search&query=sea+ice
- Not using native HTTP status codes
 - Returning a 200 for an error/exception

First Generation Standards Realities

- Building for the 100% use case
 - Given the 80/20 rule, the last 20% is usually difficult
- Data: Deep, complex content models
- APIs: overloaded methods, not "of the web"
- See OGC GML

First Generation Services and Standards Realities

- Lack of mass market integration
 - Complex machinery/architecture for services to be indexed/crawlable
 - Challenging for web developers
 - Challenging for mass market search

CURRENT STATE WEB SERVICES AND STANDARDS

REST/JSON/OpenAPI

- REST
 - HTTP verbs
 - GET /collections/foo/items/5
 - GET /collections/foo/items?q=sea+ice
 - HTTP status codes (200, 201, 400, 404, etc.)
 - URIs to identify resources
 - Content negotiation (media types)
 - Stateless
- OpenAPI
 - How to describe a REST API
 - Endpoints, methods, request parameters, responses

- JSON (JavaScript Object Notation)
 - Small payload (no closing tags/keys)
 - Very popular for web/mobile application data handling
 - JSON Schema
 - Same data structure / constructs in popular programming languages (Python, JavaScript, etc.)
 - Rich tooling / ecosystem
 - JSON is a foundational building block
 - GeoJSON (RFC 7946)
 - OGC API
 - STAC

Standards Evolution

- 2016: GeoJSON
- 2017: W3C Data on the Web Best Practices
 - https://www.w3.org/TR/dwbp
- 2017: W3C Spatial Data on the Web Best Practices
 - https://www.w3.org/TR/sdw-bp
- 2017: OGC API Whitepaper
- 2018: STAC
- 2018: OGC API development (https://ogcapi.org)
 - https://ogcapi.ogc.org/apiroadmap.html

- Being webby/of the web
- Specifications developed on the Web
 - GitHub (issues/discussion/collaboration)
 - https://github.com/opengeospatial
 - https://github.com/w3c
- Standards developed in AsciiDoc and released as HTML (first) and PDF

METADATA RECORDS

The Record Model

- OGC API Records, Metadata Record Schema
 - https://github.com/opengeospatial/ogcapirecords/blob/master/core/openapi/schemas/recordGeoJSON.yaml
- Example (MSC NWP Global Model, 15km)
 - https://github.com/OGCMetOceanDWG/ogcapi-records-metoceanbp/blob/master/core/examples/msc.gdps.json

The Record Model

```
"id": "c041e79a-914a-5a4e-a485-9cbc506195df",
         "type": "Feature",
         "geometry": {
             "type": "Polygon",
            "coordinates": [
                        -180,
                        -180,
                        180,
                        -180,
29
30
31
32
             "externalId": "c041e79a-914a-5a4e-a485-9cbc506195df",
33
             "title": "Global Deterministic Prediction System",
             "description": "The Global Deterministic Prediction System (GDPS) carries out physics calculations to arrive at deterministic predictions of atmospheric elem
             "themes": [
                    "concepts": [
                        "Prediction",
                        "Global",
                         "Deterministic"
42
43
                     "concepts": [
45
                        "Weather forecasts",
46
                        "Precipitation",
47
                        "Air temperature",
48
                        "Humidity",
49
                        "Snow",
```

```
33
            "title": "Global Deterministic Prediction System",
34
            "description": "The Global Deterministic Prediction System (GDPS) carries out physics calculations to arrive at deterministic predictions of atmospheric elem
35
            "themes": [
36
                {
37
                     "concepts": [
38
                        "Prediction",
39
                        "Global",
                        "Deterministic"
40
41
42
                 },
43
44
                    "concepts": [
45
                        "Weather forecasts",
46
                        "Precipitation",
47
                        "Air temperature",
48
                        "Humidity",
49
                        "Snow",
50
                        "Wind",
51
                        "Meteorological data"
52
                    ],
53
                     "scheme": "https://canada.multites.net/cst/EAEAD1E6-7DD2-4997-BE7F-40BFB1CBE8A2/CST20201211.rdf"
54
                },
55
56
                     "concepts": [
57
                        "Weather and Climate",
58
                        "International",
59
                        "Atmosphere"
60
                    1,
61
                     "scheme": "ISO Harmonized North American Profile (HNAP)"
62
                },
63
64
                    "concepts": [
65
                        "weatherForecasts",
66
                        "meteorology"
67
                    ],
68
                     "scheme": "https://raw.githubusercontent.com/wmo-im/wcmp-codelists/main/codelists/WMO_CategoryCode.csv"
69
                },
70
71
                     "concepts": [
72
                        "forecasts"
73
                    ],
74
                     "scheme": "https://raw.githubusercontent.com/wmo-im/BUFR4/v35/BUFR_TableA_en.csv"
75
76
            ],
77
            "language": "en",
78
            "type": "dataset",
79
            "created": "1991-03-12",
80
            "publisher": "Government of Canada; Environment and Climate Change Canada; Meteorological Service of Canada",
81
             "formats": [
82
                 "GRTR2"
```

```
106
         "associations": [
107
108
                 "rel": "download",
                 "href": "https://dd.meteo.gc.ca/model_gem_global",
109
110
                 "type": "WWW:LINK",
                 "title": "MSC Datamart"
111
112
             },
113
             {
114
                 "rel": "download",
115
                 "href": "https://api.weather.gc.ca/stac/msc-datamart/model_gem_global?f=json",
                 "type": "STAC",
116
117
                 "title": "GDPS STAC"
118
             },
             {
119
120
                 "rel": "download",
121
                 "href": "amqps://dd.weather.gc.ca/model_gem_global.#",
122
                 "type": "OASIS:AMQP",
123
                 "title": "MSC Datamart AMOP"
124
             },
             {
125
126
                 "rel": "service-desc",
127
                 "href": "https://geo.weather.gc.ca/geomet?service=WMS&version=1.3.0&request=GetCapabilities",
128
                 "type": "OGC:WMS",
                 "title": "MSC GeoMet Web Services"
129
            }
130
131
         ],
132
         "links": [
133
            {
134
                 "rel": "alternate",
135
                 "href": "https://eccc-msc.github.io/open-data/msc-data/nwp_gdps/readme_gdps_en",
                 "type": "WWW:LINK",
136
137
                 "name": "GDPS dataset description"
138
             },
             {
139
140
                 "rel": "alternate",
                 "href": "https://csw.open.canada.ca/geonetwork/srv/csw?service=CSW&version=2.0.2&request=GetRecordById&outputSchema=csw:IsoRecord&ElementSetName=full&id=
141
                 "type": "WWW:LINK",
142
143
                 "name": "HNAP ISO metadata XML"
144
145
146 }
```

Metadata Granularity Examples

- datasetcollection: NWP model (OARec record metadata)
 - dataset: NWP model output: air temperature (OARec record metadata)
 - product options
 - API endpoint to interrogate the data
 - x/y/z/t (granule) (STAC Item with link to actual data asset)
- datasetcollection: surface weather observations (OARec record metadata)
 - dataset: air temperature (OARec record metadata)
 - product options
 - API endpoint to interrogate the data
 - x/y/z/t (granule) (STAC Item, with link to actual data asset, link to WIGOS metadata)
- datasetsetcollection: METAR
 - dataset: air temperature (OARec record metadata)
 - product options
 - API endpoint to interrogate the data
 - product: single message (granule) (STAC Item with link to actual data asset)

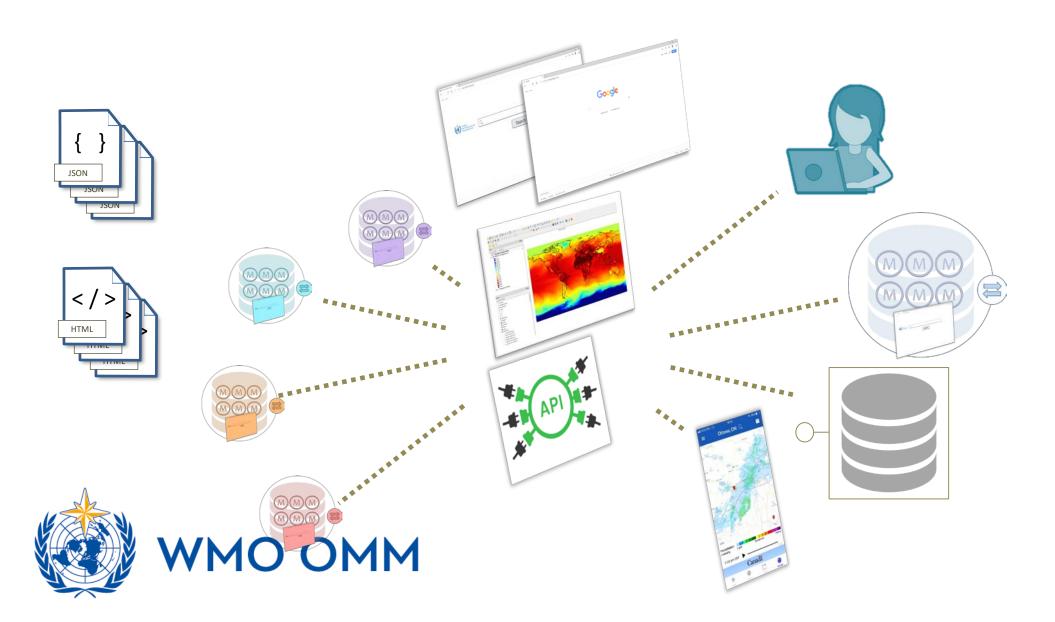
WIS 2.0 DISCOVERY, HARVEST, AND SEARCH

OGC API – Records

- OGC API effort/successor to CSW specification
- Extends OGC API Features
- HTML, JSON
- Core record model (Dublin Core/DCAT/CSW 3)
 - GeoJSON dialect
- Can be implemented as standalone catalogue or via API
- STAC relation: focus on EO, lower level metadata/granules
- Public RFC: Q1 2022

WMO Search Updates: WIS 2.0

- 1950s: data exchange via WMO Global Telecommunications System (GTS)
- 1970s: Manual on GTS
- 2007: WMO Information System (WIS)
 - metadata and catalogue atop GTS
- Today:
 - Earth System Monitoring and Prediction
 - Big data
 - Cloud
- WIS 2.0
 - Simple data exchange
 - Open Standards
 - APIs


User stories

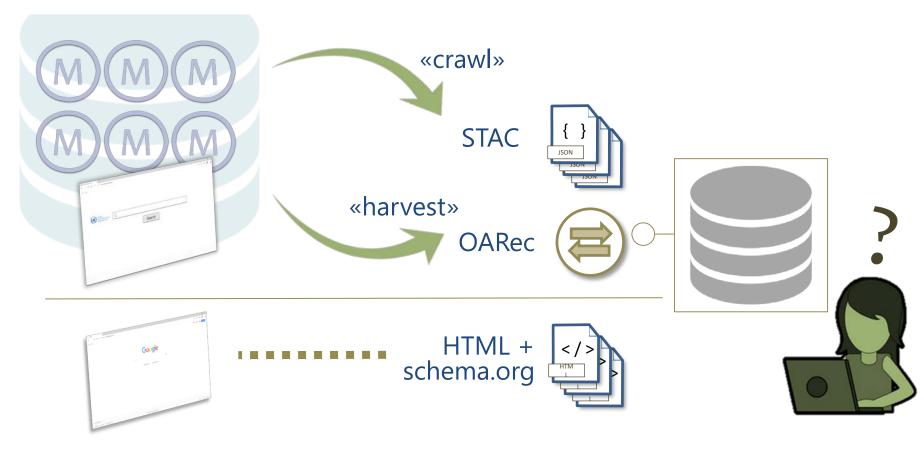
- NWP centre operator (find/bind/analyze/integrate/publish)
- Forecaster (find/analyze)
- Start-up (find)
- Developer (find/bind)
- Casual user (find)

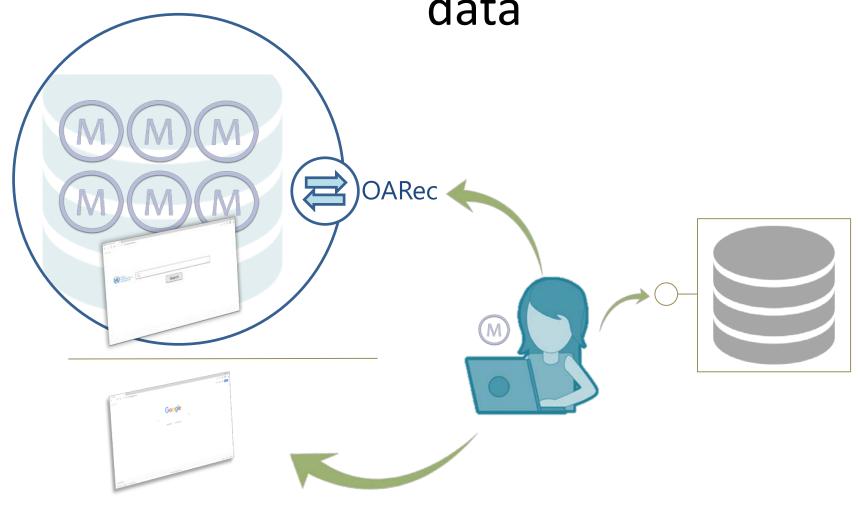
WIS 2.0 Architecture

Data publication mechanisms

Simple files: GRIB, BUFR, NetCDF, (COG, Zarr?)

Web API: OGC-API, OpenAPI, (AsyncAPI)




How do I publish metadata?

Searching the WIS Catalogue, finding data

WMO OMM

Aggregation vs. Distributed Search?

Benefits: Broad Interoperability

- It's just JSON; will work with any JSON tooling
- It's GeoJSON; will work with any GIS tooling!
- Interoperability with Google and mass market search
- JSON-LD/schema.org

Community Standardization Work

- WMO Expert Team on Metadata Standards
 - Task Team on WIS Metadata
 - WCMP 2.0
- OGC MetOceanDWG
 - MetOcean Best Practices for OGC API Records
 - Extension to OGC API Records

 1 WIS 2.0: adopts Web technologies and leverages industry best practices and open standards

 HTTP, RESTful design patterns, as well as the evolving OGC API suite of standards

• 2 WIS 2.0: uses Uniform Resource Locators (URL) to identify resources (i.e. Web pages, data, metadata, APIs)

- Resource Oriented Architecture (ROA)
- IANA link relations in support of the hypermedia

• 3 WIS 2.0: prioritizes use of public telecommunications networks (i.e. the Internet) when publishing digital resources

Leveraging the Web as the platform

• 4 WIS 2.0: requires provision of Web service(s) to access or interact with digital resources (e.g. data, information, products) published using WIS

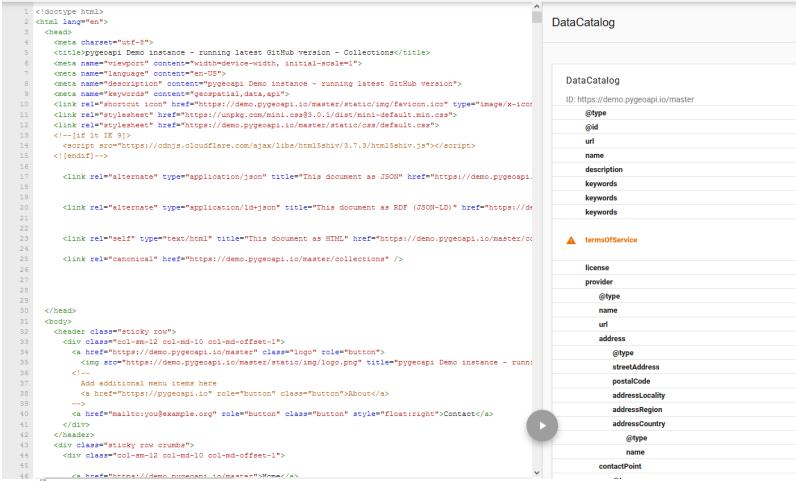
- Discovery as a web service (API) as well as hypermedia controls to related actionable services/APIs
- "Web services" mean either static resources or API machinery

• 6 WIS 2.0: will add open standard messaging protocols that use the publish-subscribe message pattern to the list of data exchange mechanisms approved for use within WIS and GTS

 Actionable hypermedia controls to protocols and services put forth in Demonstration project 1 (Exploring the use of message querying protocols for GTS data exchange)

 10 WIS 2.0: will provide a catalogue containing metadata that describes both data and the service(s) provided to access that data

 OGC API - Records as an approach for cataloguing WIS metadata for data and services and other resources

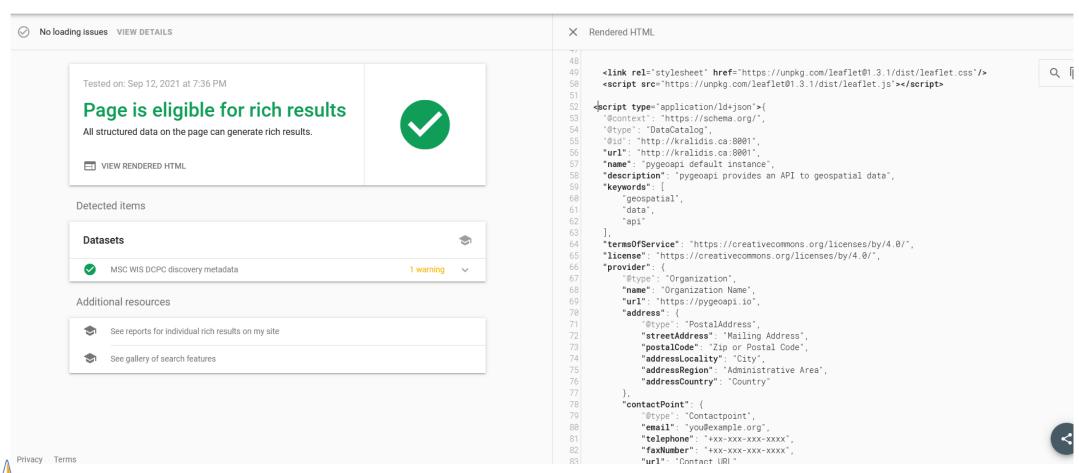

• 11 WIS 2.0: encourages data providers to publish metadata describing their data and Web services in a way that can be indexed by commercial search engines

Enabling WIS metadata for SEO and mass market interoperability

Schema.org

All (1) ▼ 0 ERRORS 1 WARNING ^ DataCatalog https://demo.pygeoapi.io/master https://demo.pygeoapi.io/master pygeoapi Demo instance - running latest GitHub version pygeoapi provides an API to geospatial data geospatial data https://creativecommons.org/licenses/by/4.0/ (The property termsOfService is not recognised by the schema (e.g. schema.org) for an object of type DataCatalog.) https://creativecommons.org/licenses/by/4.0/ Organization pygeoapi Development Team https://pygeoapi.io/ PostalAddress Mailing Address Zip or Postal Code City Administrative Area Country Canada

.



https://demo.pygeoapi.io/master/collections

WMO OMM

Test results

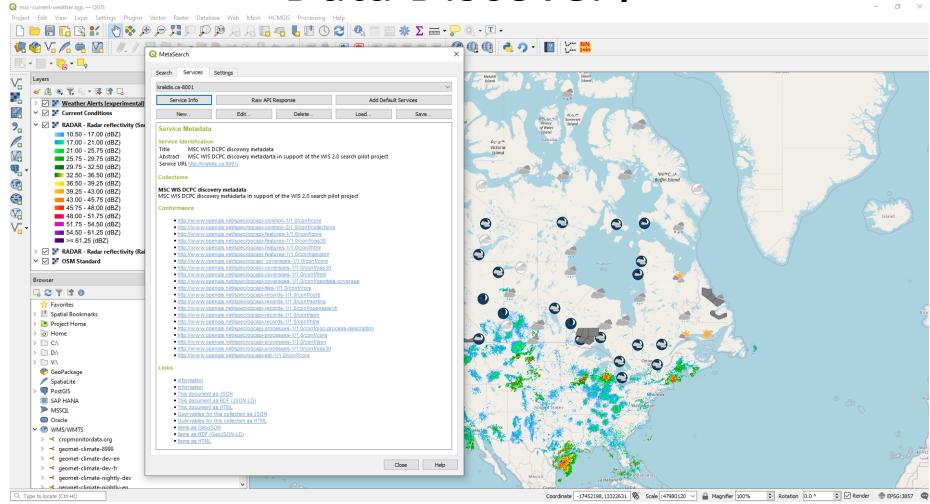
Project data standards

- Agnostic: the core focus of the pilot is on discovery metadata, providing a gateway to data
 - GRIB2, BUFR/CREX
 - GeoTIFF/CF-NetCDF
 - OGC Web Services/APIs
 - Maps (PNG/JPEG)
 - Coverages (GeoTIFF, CF-NetCDF)
 - Features (GeoJSON, CSV)

Project metadata standards

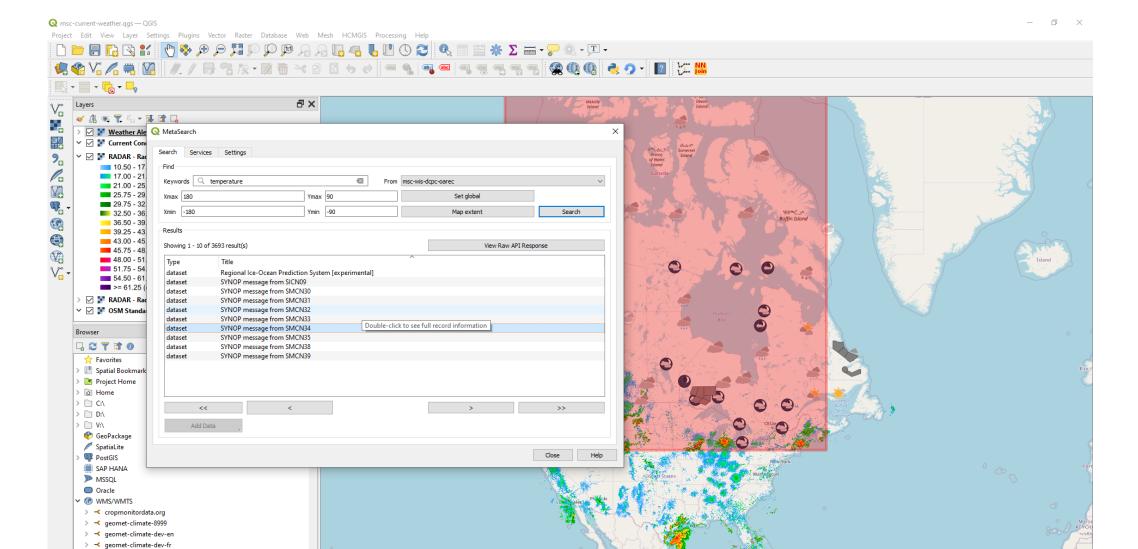
tandard(s)
OGC API – Records (OARec)
OARec record schema SpatioTemporal Asset Catalog (STAC) Schema.org/JSON-LD
(

Content models baselined with GeoJSON



Data discovery

- Discovery is key to this pilot project
- The existence of a resource (data, services, processes, etc.)
- Filtering capabilities
 - Spatial (bbox=-152,42,-52,84)
 - Temporal (i.e. datetime=2000-11-11/2001-11-11)
 - Aspatial (title=foo)
 - Freetext (q=sea ice)
- Query capabilities
 - Sorting (sortby=-title,description)
 - Paging (limit=0&startindex=1000)
- Content negotiation
 - Schema (schema=iso19139)
 - Format (f=json, f=html)



Data Discovery

WMO OMM

Coordinate -17452198,13322631 8 Scale :47980120 V Amagnifier 100%

Render ® EPSG:3857 @

Rotation 0.0 °

WMO OMM

> < geomet-climate-nightly-dev

Q Type to locate (Ctrl+K)

Data exchange

 Data exchange is facilitated indirectly from enabling users to "bind" to actionable links

Input to WIS2

- Build out topic hierarchy with Project 1
 - Expressed in metadata
 - Queryable via OARec API
- Build out a data identification scheme / granularity
- Metadata provisioning via a basic catalogue or API provisioning
 - OGC API Records
 - STAC Items
- Key performance indicators

WMO OMM

 Documentation / cookbooks for onboarding, migration, publication, and use

員

Resources / Outputs

- WIS 2.0 pilot report (in progress)
 - https://github.com/wmo-im/wis2-metadata-search
- OGC API Records Part 1: Core draft
 - http://docs.ogc.org/DRAFTS/20-004.html
- pygeoapi OGC API Python Server
 - https://pygeoapi.io
- OGC API Records clients
 - OWSLib: https://geopython.github.io/OWSLib
 - QGIS MetaSearch: https://docs.qgis.org/latest/en/docs/user-manual/plugins/core-plugins/plugins-metasearch.html

Thank you Merci

WMO OMM World Meteorological Organization Organisation météorologique mondiale